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1. Abstract

This paper deals with 2-dimentional synthetic aperture
radar interferometry. Because of high sensitivity to
noise, we propose a two-step phase unwrapping
approach. The purpose of preprocessing is to organize
the phase by an adaptive filter to improve the estimation
of the ground slope vector. The main process smoothes
the phase, using the ground slope components, and
unwraps the signal. We present numerical and
experimental results for synthetic data.

2. Introduction

Synthetic aperture radar (SAR) interferometry is a
powerful technique allowing the generation of digital
ground models (DGM). To get a high quality DGM, we
must have a low-noise interferometric image. To unwrap
the phase, it is thus necessary combine two single
complex views, obtained from different observation
angles, of the same scene. In a low-noise case the
unwrapping would be easy; however, local errors due to
noise result in global errors due to causal nature of
unwrapping. Several methods exist [3] [4] to avoid the
propagation of local errors; for example [2], detects
fringe lines with edge enhancing and then adds π2
whenever the path crosses a fringe line.
Our approach consists in a preprocessing which is a
simple partial unwrapping method, followed by the main
algorithm, which unwraps and smoothes the signal by
working on the ground slope vector components.

3. Statement of the problem

The problem can be defined as follows :

bk ++= πθψ 2 (1)

where ψ  represents the unwrapped phase, θ  the

wrapped noisy phase, k  an integer for unwrapping, and
b the noise.

To restore the signal we must find the best k (phase
unwrapping) and then filter the resulting ψ  to improve

the phase estimate. We then find the DGM.

The solution we propose is based on signal slopes.
Indeed, we make the strong assumption that the ground
slopes are very smooth, except ground irregularity. Our
unwrapping algorithm works in two steps :

9 The first step (preprocessing) is used to get a better
estimation of the gradient of the signal i.e. the
ground slopes. We obtain a partially unwrapped
phase. This algorithm directly works on observed
signal θ .

9 The second step (main processing), the original
contribution of this paper, is to use the ground slope
vector components to unwrap and smooth the
phase.

4. Main Processing

The main idea is to smooth the ground slopes while
preserving edges [5] due to wrapping and some ground
irregularities. We use the assumption that the ground
slopes are very smooth.
Under the assumption that ground is modeled as a non-
separable function, we mathematically define :
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with xZ  and yZ  the components of the ground slope

vector, or first order derivatives of ψ , and xM  the

integration matrix in the x axis direction (i.e. yM  in the

y axis direction).
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xM  is a bloc-matrix :
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To estimate ψ  we need to estimate one of the slope

vector components xZ  or yZ . Yet, we need to estimate

both of the xZ and  yZ  components in order to avoid

artifacts due to integration, which are lines with the
same orientation as the integration direction.
To estimate the xZ  and yZ  components of Z  from θ
and k while taking into account the assumption of
homogeneous ground slopes, we minimize the criterion
of the form :
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where xZ∇  is the modulus of the gradient component

xZ , i.e. the second order derivative of ψ , λ  and µ
represent the regularization parameters that control the
relative weighting between the data term and the
regularization terms. The potential function ϕ , that is

applied on the gradient of the slopes, is chosen so as to
preserve edges [5] due to wrapping and to ground
irregularity. The obtained sharp discontinuities, due to
wrapping, are easily removed by a non linear filter like a
median. Consequently, we introduce the parameter δ  as
a threshold level from which we decide to preserve or
smooth the discontinuities. To preserve discontinuities,
the ϕ  functions must satisfy some properties [1]. The

third term of the criterion :

( )∑ −
yZ

yxxy ZDZD 2µ  represents a constraint on the

second partial derivative of ψ  with respect to x and y :

ψxyxy DDZD = , i.e. ψyxyx DDZD = .

This constraint assumes that whatever the way to
calculate a pixel from an other one, the solution must be
equal :

To calculate 1,1 ++ jiψ  from ji ,ψ  :
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eventually :

ψψ yxxy DDDD =

If this equality is verified then the artifacts, due to
integration, are avoided.

We use a derivative method to minimize the criterion (4)
and (5).
Consequently, the minimum of ( )xZJ , if it exists,

satisfies the following equation :

( )

( ) ( ) yx
T
y

T
xxy

T
ypondx

T
x

x

x

ZDDkMZDDMM

Z

ZJ

µπθµ
δ
λ ++=+∆−

⇔=
∂

∂

2 

0

2

(6)

and the minimum of ( )yZJ , if its exists, satisfies the

following equation :
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With pond∆  as a discrete approximation of weighted

laplacian [1], weighted by the coefficients :
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The variable d is then a map of the edge locations, i.e.
for ( )yy Zd

ji ,
.

The algorithm is :

( )θθ ingPreprocess= , see § 5.

( ) 1,0 00 == xZdψ
Repeat

1+n
xZ , solving (6) with a conjugate

gradient algorithm.
1+n

yZ , solving (7) with a conjugate

gradient algorithm.
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Until convergence.

With nint as the nearest integer function.

Notice that x
n
medZ 1+  is obtained by a median filtering of

1+n
xZ . Moreover, the result is not very sensitive to the

size of the median filter.
The presence of noise can result in many wrapping in a
small range, and we cannot estimate slopes in the areas
where jumps of π2 are too close together. For this
reason, we introduce a preprocessing stage to reorganize
the data.

5. Preprocessing

The basic idea is to organize the data such that there is
no difference between a pixel and its previous neighbors
bigger than π . Because of the causal aspect of
unwrapping, we use the following causal neighborhood
of the scanned pixel :

For a neighborhood of size t, we estimate the local value
of k  :
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where nint is the nearest integer and ( )tΕ  is the mean of

neighborhood pixels. Notice that k  depends on
neighborhood size t. Moreover, the result is sensitive to
the noise level and consequently to t.
The solution we take is to adapt t during the
preprocessing.

6. Experimental results

Experiments on our algorithm were conducted for
synthetic data, a Gaussian signal (Fig 1), and for real
data, ERS1 interferogram of ETNA volcano's crater (Fig
7, 8).
For the original Gaussian signal, the uniform noise was
high enough to force the preprocessing algorithm into
traps (Fig 3). But the main preprocessing stage, working
with the ground slopes (Fig 4), unwraps and smoothes
the phase efficiently (Fig 4).
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8. Conclusion

In this paper, we propose a new SAR interferometry
algorithm for phase that uses smoothed ground slope
components. The experimental results on 2-D signals are
encouraging. We also seek to improve our method
through ground irregularity preservation and a better
homogeneous slope model.
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Fig. 1 : Original gaussian.

Fig. 2 : Wrapped noisy gaussian and a cross-section.

Fig. 3 : Preprocessing : partially unwrapped phase in order to get a
better estimation of  the slope components.

Fig. 4 : Ground slope component xZ  and Unwrapped signal.

Fig. 6 : Cross sections of the original gaussian (left side) and of the
Unwrapped and smoothed signal (right side).

Fig. 7 : The ERS1 interferogram of ETNA volcano 's crater.

Fig. 8 : The unwrapped ETNA volcano 's crater.


