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ABSTRACT

This paper presents a new approach for 3-D object seg-
mentation. Objects from a stack of images are repre-
sented as overlapping ellipsoids. Graylevel statistics and
shape features are simultaneously employed for object
modeling in an unsupervised approach. The extension
of the Hough Transform in the 3-D space is used for �nd-
ing the ellipsoid centers. Each ellipsoid is modeled by
a Radial Basis Function (RBF) and the entire structure
is represented by means of an RBF network. The pro-
posed algorithm is applied for blood vessel segmentation
from tooth pulp in a stack of microscopy images.

1 Introduction

Representation and recognition of 3-D objects is an im-
portant task in structure identi�cation and visualiza-
tion [1]. The main approaches in 3-D object identi�ca-
tion consist of representing each 3-D object either by a
global model description or as a set of component ele-
ments. Various model-based supervised classi�ers have
been tested in segmenting 3-D images in [2, 3]. Each
region is associated with a multivariate Gaussian mix-
ture density in [3]. The initial Gaussian parameter esti-
mates in [3] are obtained by means of k-means cluster-
ing. RBFs were used for 3-D iterative image reconstruc-
tion from projection data in [4].

In this paper we propose a pattern classi�cation ap-
proach for segmenting 3-D objects. The input space
consists of four features, denoting the voxel coordinates
and the graylevel. The parameters of the ellipsoids can
be found using the normalized �rst and second order
moments [5]. In order to estimate the ellipsoid shape
in noise we employ the �-Trimmed Mean algorithm [6].
A classical RBF and Median RBF learning algorithms
described in [7] are particular cases of the proposed al-
gorithm. The extention of the Hough Transform in 3-D
is employed for estimating the centers of the ellipsoids in
the context of the �-Trimmed Mean RBF training algo-
rithm. Examples when applying the proposed algorithm
in 3-D image segmentation are provided.

2 Segmentation Criterion

A classi�cation approach is employed for 3-D object seg-
mentation. An object is recognized according to the
pattern classi�cation theory :

p(OkjF) =
M
max
j=1

p(Oj jF) (1)

whereM is the total number of objects, Ok is the object
to be identi�ed and F represents a volumetric image.
According to the Bayesian rule :

p(Oj jF) =
p(FjOj) p(Oj)

p(F)
: (2)

We decompose the object probabilities in a set of com-
ponent probabilities. The relationship (1) becomes :

LY
m=1

[p(Fjgmk) p(gmk)] =
M
max
j=1

(
LY

n=1

[p(Fjgnj) p(gnj)]

)

(3)
where the components making up the object Oj are de-
noted as gnj . Each of the component probabilities can
be expressed as an energy function which is denoted as
�m(X).
The a priori probabilities p(gnj) scaled by a constant

are taken as weighting factors, denoted by �nj . The
relationship (3) can be expressed as :

LX
m=1

�mk exp[��m(X)] =
M
max
j=1

(
LX
n=1

�nj exp[��n(X)]

)
:

(4)
This structure is implemented in an RBF network.

3 3-D Hough Transform

We can observe that a Gaussian function describes ge-
ometrically an ellipsoid. Each continous object is con-
sidered as made up from a set of ellipsoids. We extend
the Hough Transform (HT) in the 3-D space for iden-
tifying the centers of the ellipsoids. HT represents a
mapping from the image features to sets of points in a
parameter space [5]. In order to �nd the object edges
we apply the 3-D extension of the Sobel edge detector



algorithm which provides the edge orientation as well.
We consider the spherical coordinate system which ap-
propriately matches the ellipsoid description. At the in-
tersections of perpendiculars on the 3-D edges that are
raised at the points where a signi�cant edge is located
we increment an accumulator :

x = xe + r cos(�) cos(�) (5)

y = ye + r cos(�) sin(�) (6)

z = ze + r sin(�) (7)

for a certain assumed interval r = (0; R) starting with
the position of the edge points (xe; ye; ze), where the
edge orientation is given by (�; �). Each selected edge
point will generate a di�erent surface in the parameter
space, but all surfaces generated by the same model in-
stance will intersect at a common point which describes
the model instance. The bigger accumulator represents
a larger probability that the corresponding location rep-
resents the center of an ellipsoid.

4 Alpha-Trimmed Mean RBF Network

RBF network consists of a two-layer neural network. A
hidden-layer unit implements the Gaussian function :

exp[��m(X)] = exp[�(X� �m)
T��1m (X� �m)] (8)

where �m denotes the center vector and �m the covari-
ance matrix. The output of the network for the data
vector X is denoted by Yk(X), where k = 1; : : : ; N and
is limited to the interval (0; 1) by a sigmoidal function :

Yk(X) =
1

1 + exp

 
�

LX
m=1

�mk exp[��m(X)]

! (9)

where L is the total number of hidden units. Each out-
put corresponds to an object in the image.
In the training algorithm we generate a set of centers

at random and the algorithm calculates the Euclidean
distance from a data sample to each of them. The closest
center to the given data vector is chosen to be updated :

kX� �̂kk =
L

min
i=1

kX� �̂ik: (10)

In the classical approach based on the Learning Vector
Quantization, the center is updated using :

�̂k = �̂k +
1

Nk

(X� �̂k) (11)

where Nk is the number of data samples associated with
the kth basis function. For the covariance matrix, clas-
sical estimate can be used :

�̂k =

NkX
i=0

(Xi � �̂k) (Xi � �̂k)
T

Nk � 1
(12)

In [7] the marginal median and median of the absolute
deviations from the median estimators were employed
for estimating the RBF center and covariance matrix.
In this study, after ordering the data samples X(0) <

: : : < X(Nk), we use the �-Trimmed Mean algorithm :

�̂k(t) = �̂k(t� 1) +
ci (X(i) � �̂k(t� 1))

Nk��kNkX
i=�kNk

ci

if �kNk < i < Nk � �kNk

�̂k(t) = �̂k(t� 1) otherwise

(13)

where ci is the accumulator provided by the 3-D Hough
Transform used as a weight and �k is the percentage to
be trimmed. It has been proved that by trimming an
ellipse, its center estimation is unbiased [8].
The parameter �k is chosen according to the data dis-

tribution. The following measure is used for estimating
the tail of the data distribution [9, 10] :

Q =
U [0:5]� L[0:5]

U [0:05]� L[0:05]
(14)

where U [�], L[�] represent the average of the upper and
respectively the lower � percentage of data samples as-
signed to a speci�c basis function. The number of data
samples to be trimmed away relies directly on the value
of Q :

�̂k =
1�Q

2
: (15)

When the distribution is long tailed, the amount of data
samples to be trimmed is large. When the distribution
tail is short, the amount of data samples to be trimmed
is small.
In order to estimate the covariance matrix, we �rstly

order the data samples with respect to their Maha-
lanobis distance to the center vector and we trim an �M
percentage of the data situated at the higher extreme of
the resulting distribution. The covariance matrix can
be estimated using :

�̂k =

Nk�2�k;M NkX
i=0

(X(i);M � �̂k) (X(i);M � �̂k)
T

(1� �k;M )(Nk � 2�k;M Nk)
(16)

where the division by the factor (1 � �k;M ) is used in
order to compensate for the data loss in the case of ideal
ellipsoids [8]. The percentage of the data samples to be
trimmed for estimating the covariance matrix is calcu-
lated using :

�̂k;M = 1�
U [0:5]

U [0:05]
(17)

We can observe that for �k; �k;M = 0 in (13,16) we
obtain the classical RBF training algorithm and for
�k = 0:5 we obtain the Median RBF algorithm [7].
In order to group various ellipsoids in distinct objects

we employ two criteria: the �rst criterion considers the



compactness and the second takes into account the sim-
ilarity in the graylevel statistics. Each voxel in the vol-
umetric image is assigned to a basis function. For the
regions from the volumetric image which are neighbor-
ing each other we estimate a graylevel similarity and we
provide a label to each of them, denoted as Fk(X) :

If

255X
b=0

�
gm(b)

Nm

�
gn(b)

Nn

�
< h

then

�
Fk(X) = 1
Fj(X) = 0

8 j 6= k

for all the voxels associated with the hidden units m and
n, where h is a threshold, Fk(X) is the decision func-
tion for the class k and gm(b) represents the histogram
of the object component m. In this way, the unsuper-
vised problem is transformed in a self-supervised one.
Based on these labels and on the network outputs as
provided by (9) we can use the backpropagation algo-
rithm in order to estimate the output weights �mk [7].

5 Simulation Results

The proposed algorithm has been tested on a stack of 60
microscopy images, representing the internal structure
of a tooth pulp. A frame is shown in Figure 1 (a). A ren-
dered 3-D view of the stack of images is displayed in Fig-
ure 2 (a). We intend to segment the blood vessels repre-
sented as continuous dark areas. As it can be observed
in these images, the tissue structure is very noisy and
the objects are not well de�ned. In the training stage
we have used only 20 frames (one out of each three con-
secutive frames) and the features were extracted from
16 � 16 pixel blocks. This ensured a great reduction
in the number of input data samples and, implicitly, in
the training time. After estimating the parameters from
the given subset of data, we apply the model to the en-
tire stack of images, at pixel-resolution. The classical
RBF algorithm has been compared with the �-Trimmed
Mean RBF. The segmentation results of the frame from
Figure 1 (a), when using classical RBF as provided by
(11,12) and �-Trimmed Mean RBF (13,16) algorithms
are shown in Figures 1 (b) and (c), respectively. We
can observe from these �gures that �-Trimmed Mean
RBF provides better segmentation results than the clas-
sical training algorithm. The training is unsupervised in
both algorithms. The �-trimmed mean algorithm ellim-
inates most of the noise while the joint geometrical and
graylevel features contributes to a better segmentation
of the objects. The result of the 3-D segmentation is vi-
sualized for various perspective angles in Figures 2 (b)
and (c). From these �gures it can be observed that the
3-D object modeling and segmentation is quite accurate.

6 Conclusions

We propose a new algorithm for modeling and segment-
ing objects in 3-D images. A classi�cation approach is

employed for the 3-D segmentation. The objects are
considered as composed of overlapping ellipsoids. The
classi�er employed in modeling the 3-D structure as well
as the graylevel is the RBF network, where each basis
unit corresponds to an ellipsoid. We provide a robust
learning algorithm for the RBF network based on the �-
Trimmed Mean statistics. In order to �nd the centers of
the ellipsoids we develop a 3-D Hough Transform which
is integrated in the training algorithm. The proposed
algorithm was successfully applied in a stack of noisy
microscopy images.
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(a) One of the original frames.

(b) Segmentation provided by classical RBF algorithm.

(c) Segmentation provided by the �-Trimmed Mean
RBF algorithm.

Figure 1: Frame from a stack of microscopy images.

(a) 3-D visualization of the stack of frames.

(b) Segmentation of the volumetric image.

(c) Blood vessel visualization.

Figure 2: 3-D representation of a volumetric image and
its segmentation.


